

25157-82 25158-82 25159-82 25160-82 25161-82

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ПРОТЯЖКИ ДЛЯ ШЛИЦЕВЫХ ОТВЕРСТИЙ С ЭВОЛЬВЕНТНЫМ ПРОФИЛЕМ С ЦЕНТРИРОВАНИЕМ ПО НАРУЖНОМУ ДИАМЕТРУ

КОНСТРУКЦИЯ И РАЗМЕРЫ

FOCT 25157-82-FOCT 25161-82

Издание официальное

РАЗРАБОТАНЫ Министерством станкостроительной и инструментальной промышленностм ИСПОЛНИТЕЛИ

Л. В. Барон, А. И. Либерман, А. И. Прохорова, Н. А. Кобзева, А. С. Симкин

ВНЕСЕНЫ Министерством станкостроительной и инструментальной промышленности

Зам. министра А. Е. Прокопович

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлениями Государственного комитета СССР по стандартам от 3 марта 1982 г. № 936, 937

ПРОТЯЖКИ ДЛЯ ШЛИЦЕВЫХ ОТВЕРСТИЙ С ЭВОЛЬВЕНТНЫМ ПРОФИЛЕМ С ЦЕНТРИРОВАНИЕМ ПО НАРУЖНОМУ ДИАМЕТРУ

КОНСТРУКЦИЯ И РАЗМЕРЫ

ΓΟCT 25157-82-ΓΟCT 25161-82

Издание официальное

СОДЕРЖАНИЕ

ΓΟCT 25157—82	Протяжки для шлицевых отверстий с эвольвентным профилем
	диаметром 12 и 14 мм, модулем 1 мм с центрированием по наруж-
	ному диаметру двухпроходные. Конструкция и размеры 3
I'OCT 25158-82	Протяжки для шлицевых отверстий с эвольвентным профилем диа-
	метром от 15 до 90 мм, модулем от 1 до 2,5 мм с центрированием
	по наружному диаметру. Конструкция и размеры 10
ΓΟCT 25159-82	Протяжки для шлицевых отверстий с эвольвентным профилем диа-
	метром от 15 до 90 мм, модулем от 1 до 2,5 мм с центрированием .
	по наружному диаметру двухпроходные. Конструкция и размеры . 126
ΓΟCT 25160-82	Протяжки для шлицевых отверстий с эвольвентным профилем диа-
	метром от 45 до 90 мм, модулем от 3 до 5 мм с центрированием
	по наружному диаметру. Конструкция и размеры 139
I'OCT 25161-82	Протяжки для шлицевых отверстий с эвольвентным профилем диа-
	метром от 70 до 90 мм, модулем от 3,5 до 5 мм с центрированием
	по наружному диаметру двухпроходные. Конструкция и размеры . 196

Редактор А. Л. Владимиров Технический редактор А. Г. Каширин Корректор А. П. Якуничкина

Сдано в наб. 18.03.82 Подп. к печ. 09.06.82 26,5 п. л. 27,18 уч.-изд. л. Тираж 25000 Цена 1 руб. 45 коп.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256, Зак. 906

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПРОТЯЖКИ ДЛЯ ШЛИЦЕВЫХ ОТВЕРСТИЙ С ЭВОЛЬВЕНТНЫМ ПРОФИЛЕМ ДИАМЕТРОМ 12 и 14 мм, МОДУЛЕМ 1 мм С ЦЕНТРИРОВАНИЕМ ПО НАРУЖНОМУ ДИАМЕТРУ ДВУХПРОХОДНЫЕ

ΓΟCT 25!57—82

Конструкция и размеры

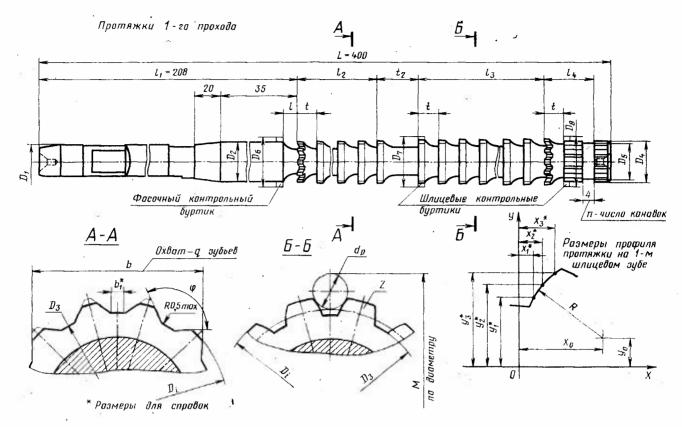
Broaches with diameter 12 and 14 mm for slitting holes with involute profile and centring at outside diameter with modul 1 mm double driven.

Construction and dimensions.

ОКП 39 2340

Постановлением Государственного комитета СССР по стандартам от 3 марта 1982 г. № 936 срок введения установлен

c 01.01. 1984 r.


Несоблюдение стандарта преследуется по закону

- 1. Настоящий стандарт распространяется на двухпроходные протяжки диаметром 12 и 14 мм, модулем 1 мм, предназначенные для обработки шлицевых втулож с эвольвентным профилем по ТОСТ 6033—80 с центрированием по наружному диаметру.
- 2. Конструкция и размеры протяжек 1-го прохода должны соответствовать указанным на черт. 1 и в табл. 1—3, 2-го прохода на черт. 2 и в табл. 4—6.
- 3. Размеры протягиваемого отверстия и усилие протягивания должны соответствовать указанным на черт. З и в табл. 7.
- 4. Наибольшие расчетные усилия протягивания *P* указаны для обработки деталей из стали I—V групп обрабатываемости по ГОСТ 20365—74.
- Для определения усилия протягивания для закаленных сталей и других материалов величину *P* следует умножить на коэффициент K, указанный в ГОСТ 25158—82.
 - 5. Центровые отверстия формы А по ГОСТ 14034—74.
 - 6. Хвостовики типа 1 исполнения 1 по ГОСТ 4044—70.
 - Допускается изготовление протяжек с хвостовиком типа 1 исполнения 2.
 - 7. Неуказанные предельные отклонения размеров: отверстий H14, валов h14, остальных $\pm \frac{11.14}{2}$
- 8. Допуск симметричности боковых поверхностей фасочных зубьев относительно боковых поверхностей шлицевых зубьев не должен превышать 0,05 мм.
- 9. Форма и размеры профиля зубьев протяжек, группы заточки, форма передней грани зубьев протяжек по ГОСТ 20365—74.
- 11. Пределы длины протягивания заготовок из чугуна, бронзы и латуни справочные. Для протягивания заготовок из этих материалов с длиной протягивания, превышающей верхний предел длины протягивания по стали, следует заказывать протяжки по специальным чертежам с увеличенной длиной до первого зуба l_1 и соответственно общей длиной протяжки.

Примечание. Длины протягивания указаны для протяжек из быстрорежущей стали по ГОСТ 19265—73 и стали марки XBГ по ГОСТ 5950—73.

12. Технические требования — по ГОСТ 6767—79.

Черт. 1

	FOCT	
	25157-82	
	Cīþ.	
П		

						_							газ	меры	в мм											
Обозначени	eHige-	$D \times m$	z	Di	D_2	<i>D</i> 3, не бо-	<i>D</i> 4 (пред.	D ₅	D_6	D ₇	D ₈	ı	l ₂	l _a	21	Число	зубьев	ŧ	Номер профи-	t ₂	<i>b</i> (пред.	b 1	ф (пред.	9	С	n
протяжки	Примен					лее	откл. -0,2)									фасоч- ных	шлице- вых		ля зубьев		откл. 0,04)		откл. ±1°)			
2403-0301		12×1	10	8	10	9,7	11,4	_	11	12	12	2,8	65	100		14	21	5	2	11	7,62	0,26	108°	3	0,1	_
2403-0304		14×1	12	10	12	11,7	13,4	10	13	14	14	4,0	60	. 96	18	11	17	6	4		10,04	0,08	120°	4		1

Пример условного обозначения протяжки для шлицевого эвольвентного отверстия диаметром 14 мм, модулем 1 мм, с щентрированием по наружному диаметру, группы заточки II, 1-го прохода:

Протяжка 2403-0304 II ГОСТ 25157—82

Таблица 2

						P	азмеры в	MM					
			1									М (пред. от	гкл. —0,03)
Обозначение протяжки	$D \times m$	X1	X2	Х3	уı	y ₂	Уз	х _о	уо	R	d _p	На переднем шлицевом буртике	На заднем шлицевом буртике
2403-0301	12×1	0,908	1,168	1,473	5,173	5,444	5,697	3,526	2,911	3,460	3,106	16,056	16,003
											3,666	17,384	17,331
2403-0304	14×1	0,880	1,141	1,444	6,153	6,450	6,732	3,988	3,688	3, 9 67	3,106	18,114	18,063
								1			3,666	19,464	19,413

Примечания: 1 С — величина подъема заднего центра на длине L при шлифовании фасонным кругом боковых поверхностей фасочных и шлицевых зубьев.

- 2. O ось протяжки,
- 3. Полный размер фаски F на калибрующих зубьях.
- 4. Размер b относится к фасочному контрольному буртику.
- 5. Размеры профиля (глубина и радиусы) зубьев с шагом t_2 одинаковы сразмерами профиля зубьев с шагом t_1
- 6. Диаметры проволочек d_p для контроля профиля соответствуют ГОСТ 2475—62.
- 7. После контроля профиля зубьев протяжки контрольные буртики сошлифовать до соответствующего окончательного диаметра направляющей или зуба. При этом допускается увеличение ширины задней поверхности этого зуба.
 - В протяжках 2-го прохода после контроля профиля зубьев профиль передней направляющей прошлифовать до окончательного размера.
 - В протяжках 1-го прохода допускаются следы шлифовального круга (зарезы) на длине сошлифованного фасочного контрольного буртика

P	a	3	М	e	P	ы	В	MM
---	---	---	---	---	---	---	---	----

		Разме	ры в ми		
	Обовначени	е протяжки		2403-0301	2403-0304
		D×m		12×1	14×1
			1	10,00	12,00
10			2	10,04	12,05
E13			3	10,08	12,10
			4	10,12	12,15
			5	10,16	12,20
:	İMX		6	10,20	12,25
PeB	фасочных		7	10,24	12,30
330	фа	X ISI	8	10,28	12,35
ia.		черновых	9	10,32	12,40
rph		фh	10	10,36	12,45
и диаметры <i>D</i> ₁ зубьев			11	10,40	12,50
и	-		12	10,44	12,58
155 65			13	10,48	12,66
Номера			14	10,52	12,74
Ħ			15	10,58	12,82
			16	10,64	12,90
	3btX		17	10,70	12,98
	шлицевых		18	10,76	13,06
	шля		19	10,82	13,14
599			20	10,88	13,22
		4		1	1

Размеры в мм

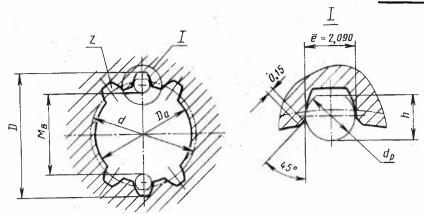
	Обозначени	е протяжки		2403-0301	2403-0304
	L	O×m		12×1	14×1
			21	10,94	13,30
			22	11,00	13,38
			2 3 .	11,06	13,46
			24	11,12	13,54
•			25	11,18	13,62
Номера и диаметр $oldsymbol{u}_{oldsymbol{t}}$ зу $oldsymbol{\sigma}_{oldsymbol{t}}$ зу $oldsymbol{\sigma}_{oldsymbol{t}}$	NX N	MX	26	11,24	13,70
Dt 3	шлицевых	черновых	27	11,30	12.70
тры	ш	46	28	11,36	13,70
иаме			29	11,42	
H			30	11,48	
мера			31	11,54	
H			32	11,60	_
			33	11,66	
		рую-	34	11,66	
		калибрую- щих	35	8	

Черт. 2

Таблица 4

						1	2 a 3	меры	B MA	A							
эначение	няе-	D×m	z	Сочетание полей допус-	s	D,	D_2	D_3	<i>D</i> 4, не бо-	D 5 (пред.	D_6	D7	Зу б ья и пер (число з	черновые еходные зубьев—14)			c
и жки то	Приме мость			ка Дие					лее	откл. -0,2)			t	Номер профиля	t_1	Номер профиля	
403-0302		12×1	10	Н7—9Н	2,140		10	11.51	9.7	11.7	8	12					
403-0303		/		Н8—11Н	2,190				'					. 4	15	0	0,088
403-0305				H7—9 H	2,140									4	4,0	2	0,000
403-0306		14×1	12	H8—11H	2,190		12	13,55	11,7	13,7	10	14					ı
	403-0302 403-0303 403-0305	ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	403-0302 403-0303 403-0305 14×1	403-0302 403-0303 403-0305 14×1 12	403-0302 403-0303 403-0305 14×1 12 H7—9H H7—9H	403-0302 403-0303 403-0305 14×1 12 H7—9H 2,140 H7—9H 2,140	означение ротяжки в в в в в в в в в в в в в в в в в в в	означение ротяжки в да	роначение ротяжки в да раз раз в да раз раз раз в да раз раз раз	означение ротяжки раз	403-0302 403-0303 403-0305 14×1 12 H7—9H 2,140 10 11,51 9,7 11,7 10 12 13,55 11,7 13,7	означение ротяжки в в ротяжки в	означение ротяжки в да в в в в в в в в в в в в в в в в в	означение ротяжки в в ротяжки в ротяж	означение ротяжки в в в в в в в в в в в в в в в в в в в	означение ротяжки в в в в в в в в в в в в в в в в в в в	раначение ротяжки

Пример условного обозначения протяжки для шлицевого эвольвентного отверстия диаметром 14 мм, модулем 1 мм, с центрированием по наружному диаметру, полем допуска центрирующего диаметра Н7 и ширины впадины 9H, группы заточки II, 2-го прохода:


Протяжка 2403-0305 II ГОСТ 25157-82

Р	a	3	M	е	p	ы	В	MM

														М	let .	ед-
Обозначение протяжки	D× m	Сочетание полей допус- ков D и е	<i>X</i> ₁	X2	<i>X</i> ₃	y 1	у ₂	Уз	х,	Уо	R	d _p	на бур- тике	на послед- нем ка- либрую- щем зубе	d_{p_1}	М, (на перед- ней направ- ляющей)
												2,071	14,059	13,989		
2403-0302		H7—9H	0,658	0,918	1, 22 3				3,276			2,598	15,333	15,262	- 3	
30 10	12×1					5,173	5,444	5,697	l	2,911	3,460	3,106	16,526	16,456		15,86
·							I(é					2,071	14,116	14,046		
2403-0303		H8—11H	0,631	0,891	1,196				3,249			2,598	15,384	15,313		
												3,106	16,572	16,502	3,106	
												2,071	16,103	16,033		
2403-0305		H7—9H	0,630	0,891	1,194				3,738			2,598	17,400	17,329	<u> </u>	
	14×1					6,153	6,450	6,732	2	3,688	3,967	3,106	18,613	18,543		17,90
						Ì			l			2,071	16,164	16,096		
2403-0306		H8—11H	0,603	0,864	1,167				3,711			2,598	17,454	17,386		
		1		}]			ļ				3,106	18,662	18,595	120	

C	бозначение пр	отяжки	2403-0302	2403-0303	2403-0305	2403-0306
	тание полей д		H79H	H8—11H	H7-9H	H8—11H
	D×n	1	12	×1	1	4×1
]		1	10,430	10,430	12,370	12,370
	i	2	10,580	10,580	12,530	12,530
1		3	10,730	10,730	12,690	12,690
	K X	4	10,880	10,880	12,850	12,850
	черновых и переходных	5	11,030	11,030	13,01 0	13,010
4 8	bex	6	11,180	11,180	13,170	13,170
	я Н	. 7	11,330	11,330	13,330	13,330
	¥ 2	8	11,480	11,480	13,490	13,490
	H08	9	11,630	11,630	13,650	13,650
,	ф	10	11,690	11,690	13,710	13,710
		11	11,750	11,750	13,770	13,770
		12	11,810	11,810	13,830	13,830
		13	11,870	11,870	13,890	13,890
		14	11,930	11,930	13,930	13,930
	×	15	11,960	11,960	13,960	13,960
	чистовы х	16	11,980	11,990	13,980	13,990
69 ₁₈₀	EHCT.	17	12,000	12,010	14,000	14,010
	J	18	12,018	12,027	14,018	14,027
		19				
1	йих	20				
	калибрующих	21	12,018	12,027	14,018	14,027
	ибр	22		12,021	11,010	1
	кал	23				
		24				

Черт. 3

Размеры в мм

Таблица 7

Обозначение	D×m	2	про-	Сочетание полей допус-	d	<i>D_a</i> (поле	d _p	h	M _B		Длина про	тягивания	<i>P</i> , H (е протя кгс) пр нем угл	гивания и перед- е
протяжки	=		Номер хода	ков D и e	ā	допус- ка H11)	<i>p</i>		Наим.	Верхн. откл.	Сталь и алюминие- вые сплавы	Чугун, бронза, латунь	20°	15°	10°
2403-0301			1	_						_					
2403-0302	12×1	10	2	H7—9H	10	10	2,021	1,8	7,559	+0,064	*		10300 (1050)		12150 (1240)
2403-0303	1	_	_	H8—11H			2,021		7,597	+0,123	15—23	15—28			
2403-0304			1												
2403-0305 2403-0306	14×1	12	2	H7—9H H8—11H	12	12	2,021	1,8	9,565 9,602	+0,062 +0,119	124		11800 (1200)	1 28 50 (1310)	13800 (1410)

Изменение № 1 ГОСТ 25157—82 Протяжки для шлицевых отверстий с эвольвентным профилем диаметром 12 и 14 мм, модулем 1 мм с центрированием по наружному диаметру двухпроходные. Конструкция и размеры

Постановлением Государственного комитета СССР по стандартам от 26.03.86 № 795 срок введения установлен

c 01.09.86

Пункт 1 изложить в новой редакции: «1. Настоящий стандарт распространяются на двухпроходные протяжки универсального назначения диаметром 12 и 14 мм, модулем 1 мм, предназначенные для обработки шлицевых втулок с

(Продолжение см. с. 88)

87

- (Продолжение изменения к ГОСТ 25157-82)

эвольвентным профилем по ГОСТ 6033-80 с центрированием по наружному

Пункт 2 дополнить абзацем: «Допускается, по требованию заказчика, корректировка размеров М (табл. 5) и диаметров чистовых и калибрующих зубыев (табл. 6)»;

таблица 4. Пример условного обозначения дополнить абзацем: «То же, протяжки с откорректированными исполнительными размерами:

Протяжка 2403—0305К П ГОСТ 25157—82». (ИУС № 7 1986 г.)

Изменение № 2 ГОСТ 25157—82 Протяжки для шлицевых отверстий с эвольвентным профилем диаметром 12 и 14 мм, модулем 1 мм с центрированием по наружному диаметру двухпроходные. Конструкция и размеры

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 23.09.87 № 3627

Дата введения 01.02.88

Пункт 2. Размеры l_2 и l_3 (чертеж 1), 84 и 40,5 (чертеж 2) дополнить знаком сноски *;

размеры l_4 (чертеж 1), 8 и 14 (чертеж 2) дополнить знаком сноски **; чер• тежи 1, 2 дополнить сноской **: «** Размеры рекомендуемые».

Пункт 7. Заменить обозначения: H14 на H16, h14 на h16, $\pm \frac{\text{IT14}}{2}$ на $\pm \frac{\text{IT16}}{2}$.

(ИУС № 1 1988 г.)

129

5 3ak. 3261